Water Pollution Science: Sources and Treatment

Arthur E. McGarity Department of Engineering Swarthmore College

Water Pollution Sources

- Point Sources
 - Industrial (manufacturing and
 - Domestic (human waste)
- NonPoint Sources
 - Agricultural Runoff
 - Mine Drainage
 - Urban Stormwater Runoff
- Combined Sources
 - Urban Combined Sewer Systems
 - Hydraulic Fracturing

Categorizing Water Pollutants

Additional Characterizations:

- Toxic / Nontoxic
- Oxygen Demanding

- Infectious
- Algae Stimulating (Nutrient)

Measures of Water Pollution (Typical numeric values – Concentrations)

Pollutants in mg/ L	Raw Sewage	Urban Runoff	Fracking Waste	Sea Water (comparison)
Total suspended solids	230	650	99	
Total dissolved solids	500	10,000 (road salt)	67,300	35,000
Biochemical oxygen demand	210	30	144	
Total Nitrogen (nutrient)	40	8	86	0.5
Total Phosphorous (nutrient)	8	0.6		

Source: blog.labplanet.com

Time

Nitrogen & Phosphorous (Nutrient Pollution)

Source: www.bbc.co.uk

Nutrient Pollution: Causes Algae Bloom in a pond

Source: en.wikipedia.org

Toxic Contamination

WATER POLLUTION SOURCES

Urban Sewers

Suburban Separate Sewers

Source: Village of Spencerport NY

Conventional Wastewater Treatment Plant

Hydraulic Fracturing in PA

Source: Wikipedia

Water Taken from Natural Streams

Wastewater from Hydraulic Fracturing

Figure 1. Summary of Management Options for Shale Gas Wastewater

Problems on Urban Streams

- Used as "storm sewers"
- Carry excess sediment and many pollutants
- Surging flows cause stream bank and bed erosion
 loss of land from yards and parks
- Groundwater recharge is cut off so creeks dry up soon after rain
- Declining quality of aquatic life low diversity and only pollution tolerant species can survive

Impaired Streams

- Suspended Solids loads deposit sediment
- Excess Nutrients in runoff and sediments Nitrogen and Phosphorous
- High flow velocities erode banks

Bank-Full Storm Events are Too Frequent

• Channel Erosion

• Flood Hazard

Low Base Flow

• Impervious Surfaces Cut Off Groundwater Recharge

The Cause: Urbanization & Stormwater Runoff

Stormwater piped directly to nearest stream with no treatment

More than 250 Tons of sediment added every year from upstream runoff and

Sediment Bars Above Ridley Park

Pulse 2

FA

What Can We Do to Restore Water Quality?

- Install Green Infrastructure Technologies throughout the watershed
 - hold back the runoff from 90% of storms and infiltrate whenever possible
 - remove pollution using biological and mechanical filters
- **Restore** tree canopy and other vegetation in the *riparian buffer zone*
- **Preserve** remaining forests and wetlands by conservation easements and land purchases

Bioretention Cell

GROUNDWATER RECHARGE FACILITY

Vegetative Swale

Porous Pavement

Rain Barrel

Infiltration Trench

Green Roof

Chicago City Hall

Green Roof

Swarthmore's Alice Paul and David Kemp Residences

GreenPhilly Research Group

ONORS UNIVERSITY IN MARYLAND

Maximizing GI Benefits through Measurement, Modeling, and Community-Based Implementation

 <u>Multi-Objective Benefit-Cost Framework</u>: the Storm Water Investment Strategy Evaluation (<u>StormWISE</u>) model combines outputs from the different project components: hydrologic, engineering, socio-economic, environmental

Community Engagement in "Bottom-Up" Benefits Model Development (Christina Rosan - Temple)

- Create a <u>Community Advisory Research Board</u> hold workshops:
- to prioritize factors influencing GI <u>site selection</u> and <u>which GI</u> <u>technologies</u> to install
- to obtain guidance on how to <u>evaluate co-benefits</u>: community, economic, environmental, and social <u>benefits and impacts</u> of GI
- to delineate <u>Zones of Green Infrastructure</u> (ZGIs) in CSO area
- to obtain feedback for <u>adaptive management</u>
- to develop protocols for <u>future human subjects research</u> on community involvement in GI implementation

Adapt StormWISE Model for Philadelphia Green Infrastructure (Art McGarity, Swarthmore College)

- Develop <u>web version</u> to facilitate interaction with community advisory board
- Incorporate <u>calibrated benefit-cost functions</u> for runoff & load reductions developed from SWMM-Borg coupled model
- <u>Include co-benefits analysis</u>, as quantitative benefit-cost functions that vary with land use and geographic zone (ZGI)
- Generate <u>initial decision support results</u>: trade-off different benefits for competing strategies influencing GI siting and practice choices

Subsurface Monitoring – Claire Welty, UMBC Leeds Middle School Site, Philadelphia

Wakefield Park Site, Philadelphia

Can We Do It?

- Lots of Money: How much? Who pays?
- Regulations: MS4 Permits and Municipal Ordinances site based, neglect watershed
- But Impaired Streams violate Federal Law!
 - TMDL Process slow, litigious
 - Watershed Associations can help, can sue
 - Stormwater authorities assess fees based on impervious area: make polluters pay

Screening: StormWISE

- **Storm Water Investment Strategy Evaluator**
- Screening Model: high level, guidance for early stages of watershed management process
- Prioritizes drainage zones, land uses, and BMP technologies for funding of implementation projects
- Identifies opportunities to reduce runoff volume and pollutant loads while maximizing effectiveness of available funds
- Extends pollutant loading models to include BMP cost minimization over entire watershed

Example: Little Crum Creek Watershed Delaware County, PA

Results

- 12 sites chosen and 18 projects developed
- Up to 18 tons/year sediment reduction at Ridley Park Lake
- \$19 Million total capital cost for all projects fully deployed
- Costs of sediment removal range: \$1.6 to \$309 per ton - Prioritization possible
- Details: watershed.swarthmore.edu: <u>Little</u> <u>Crum Creek Action Plan Project</u>

QUESTIONS?